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Solvability of the problem of a flow of a heavy perfect fluid with free bound-
ary in a channel with a bottom sloping without bounds is proved under the
conditions that the Froude number is greater than unity.

Flows in a channel the bottom of which has two horizontal asymptotics, were stud-
ied earlier [1 —3] under analogous conditions, The problems in which a heavy fluid
flows out of a vessel with the rate of flow increasing withour bounds, were studied for
the arbitrary [4, 5] and for sufficiently large [6] values of the Froude number. However,
in all the above problems the free boundary, in contrast to the flow in a channel, pass-
es through a single point at infinity.

Let us consider, in fthe z=wax+ iy plane, a steady potential flow of a perfect in-
compressible heavy fluid with a free boundary, in a channel the bottom of which con-
sists of two rays emerging from the point z = 0 and forming the angles of = and

—an  with the positive direction of the z -axis, The velocity vector at z — —

oo and the vector of acceleration due to gravity have the corresponding projections

(vo» 0) and (0, —v). Let us introduce the following notation: v and 6 are the mod-
ulus of the velocity vector and the angle between this vector and the z -axis, ¢ and
Y are the velocity potential and stream function, w = @ -+ i, Y isthe fluid
flow rate, o =T — 0 = In (v"'dw / dz), A = YU,/ v 3.

Mapping the strip 0 <% <1, inthe w-variable plane onto the strip 0 <\ n <
n/2 inthe { =% - in variable plane by means of the function w = 2¢,{/ 7 we
obtain, from the Bemoulli equation in the usual manner,

67. (D
exp [31 (i + z—’;—)] =1 ——;— S sin 0 (a -+ 1—325) dt
Function © (§) satisfies the boundary conditions (1) and the conditions
O(—ootimp=0 O<n<a/2)., 6@ =0 <0, 6=
—an  (E>0)
Using the Will's formulas we obtain
2,
u (§) = D [g (9] = Dilg (B)] -+ Dilg (B)] 2
T
1 (¢ t—E&
Dyl @) = — 5 \ ¢ (0 In|th 5= |
e
k=12, m=—o00, mg=n==8, np=0o0
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(w(®) = —0 (& + in/2) — uy(B), 4o (§) = a (n — 2 arctg %),
g®) =dv(E+ in/2)/dE
where &, is an arbitrary number. The operators D, are positive,
From (1) and (2) we obtain

u(® =D (G @l ‘ ®
oA { -1
6 (8) = -sin [ug () +u (9] [ TS sin g (2) -+ u (5)1 G

Equations (3) are equivalent to an operator equation of the type u = 7 (u), and the
solvability of the latter is proved below with help of the Schauder's principle,
Let & = In V'3 and let the parameters & and A satisfy the conditions
0<a<<1, 0A<min[1,(1 — a)n — 4] (4)
where 8 > 0 is arbitrarily small (the condition for A is the same as the inequalities
(2.28) and (4.31) in [1]). Let E be a space of functions continuous on [— oo, o]
with the norm fufl= sup|u (¢)|, and H = H (C;, C;, B) be a closed set of E
the elements u (&) of which satisfy the conditions
OI<u@®B << —-am—38 (&< ) (5)
u®<CePE E<E), v®<CG/E E>8) 6)
0<p<t, €,>0, C;>0

We shall find the estimate of F(§) =D {G(8)] = T (u) for ® = H. We note that
0y <an (8] <o) (7N
u® < 4o E<E), wE>an/3 E=E) (8

From (5) and (7) it follows that 0 <C ug(E) + u (§) < — 8 when & = (— oo, o) and
uo -+ u > sin (ug+ w) = n-lsin duy =0 (9)
Using (6), (8) and (9) we obtain from (3)
0SER <™/ (5] < o)

G (§) < m(asin88)1  (E=§y) (11
6 (§) < 8ante7Fl 4 2An-10,e7BEl (£ < £

(10)

Applying the operator D to (10) and remembering that D (1) =n/2 we obtain 0<
F(t) <A and this, together with (4), yields

ISFOSU—Dn—8 (&< ) (12)

Below we shall use the following estimates:
Dy ("B <51 (e B (5] < o) (13
DUIHKNO®) (1E]< o) (19

Q@) =Bl (EKE), OE=1/F E>&)

where N >0, f(v) is a continuous increasing function, f(0) = 1{ and f (1) = oo.
The inequality (13) has been proved in [1]. To prove (14), we shall consider the
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function r({)=1Inln(ef + 2) —~lnln2 continuous for 0N <A/ 2, | E|< oo
We denote

P =Tmr(E+1-5) = arctg —
A </ ° b
d n 2 (2a 4 bef) ef
=—R i DA C Lt L) Ll
p3(€) dE er(g+‘ 2) (a2+b2}(62§+4)

(a=2arctg (¢/2), b =1In (% + 4)

The following inequalities hold:

PESMPE) (E]<c), pB>m/E>0 (E>8) (15)

Taking into account the fact that 7 (— oo+ in) =0, Imr(E) =0 (JE] <) we
have py(8) = D [ps(E)] > Dylpa(E)]  and this, together with (15), yields
MO G =mD(1/8) (&< ) (16)

The estimate (14) with N = M / m now follows from (16),
Majorizing e8! in (11) with the function e~P&l and applying the estimates (13)
and (14) we obtain, from (11),

F (§) < nlV (o sin 8)30 (8) + Af (B)e P (¢, L 4ar) (1n
(18] < o)
Using (17), the properties of f (v} and the inequalities A <1, 0 << P <1, we can
show that a sufficiently small B and a sufficiently large  (,, and hence a sufficien-
tly large €, can be chosen such that the following inequalities will hold:

FOSOMH <), FO<T (36 (18)

Comparing (5) and (6) with {(12) and (18) we conclude, that for the values of Cy,
C; and § chosen the operator T transforms H (Cy, C,. B) into itself. Using tne

estimates obtained, we can also show the complete continuity of the contraction of
the operator 7 on H on the norm of the space £ (the proof is based on the known
fact that the family of functions Fj, (§) = D {6, (E)] is equicontinuous on any finite
interval provided that the family G, (%) isuniformly bounded for | £ < ool

From the Schauder principle it follows that when the conditions (4) hold, the equat-
ion u = T (u), equivalent to the initial hydrodynamic problem, has at leastone solu-
tion u (§) & H. Using the methods of [1, 3] we can extend the theorem of existence
proved above to the case of a channel with a curvilinear bottom sloping without bounds.
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